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Polymer shape anisotropy and the depletion interaction
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~Received 7 December 1998!

We calculate the second and third virial coefficients of the effective sphere-sphere interaction due to
polymer-induced depletion forces. By utilizing the anisotropy of a typical polymer conformation, we can
consider polymers that are roughly the same size as the spheres. We argue that recent experiments are
laboratory evidence for polymer shape anisotropy.@S1063-651X~99!01705-5#

PACS number~s!: 61.25.Hq, 36.20.Ey, 82.70.Dd
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Over 60 years ago, Kuhn studied the conformations
polymer chains@1# and recognized that typical conforma
tions of ideal chains arenot spherically symmetric. The in
tuitive idea of a symmetric shape is a result of the isotro
end-to-end vector distribution of a random walk@2#: spheri-
cal symmetry results from implicit rotational averaging
the polymer. In fact, a typical polymer conformation is a
isotropic, with an aspect ratio of roughly 3.4:1@3#.

Nonetheless, there is little laboratory evidence for t
asphericity. In solution, polymers rotate randomly and th
are no significant polymer-polymer correlations. Thus sm
angle light-scattering measurements of polymer soluti
can only determine the average principal axis of the polym
shape. If there were a way to induce strong orientatio
correlations, light-scattering measurements could discern
asymmetry. We will show that the induced attraction b
tween regions of depleted polymer concentration~inclusions!
is a probe of this shape anisotropy.

The shape tensor characterizes the spatial distributio
monomers:

Mab5E
0

N

dn@Ra~n!2R̄a#@Rb~n!2R̄b#, ~1!

whereRa(n) is the position of monomern, a andb label the
Cartesian coordinates, andR̄a[(1/N)*0

Ndn Ra(n) is the
polymer center of mass. The polymer radius of gyration
simply RG

2 5Tr(M ). Moreover, the eigenvalues ofMab ,
l1

2<l2
2<l3

2, are the average squared radii of gyration alo
the principal axes of inertia. Simulations@3,4# have deter-
mined that the most likely shape has

l3
2 :l2

2 :l1
2'11.8:2.7:1.0. ~2!

Indeed, the shape asymmetry exists and is rather large@5#.
Exploiting this shape anisotropy as a calculational tool is
main theoretical component of this paper.

Though hard spheres only interact by direct contact,
tropic effects of other particles present can induce long-ra
interactions. These sorts of forces are responsible for liq
crystalline order in lyotropic systems@6# and surface crystal
lization in hard-sphere fluids@7#. It is instructive to consider
the virial expansion for a gas of identical balls. Around ea
sphere of radiusr there is a sphere of radius 2r from which
the centers of the other spheres are excluded. When
spheres are close, their excluded regions overlap lea
PRE 591063-651X/99/59~5!/5621~4!/$15.00
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more free volume for the remaining spheres and henc
larger entropy. Thus the propensity for ‘‘close’’ configur
tions can be interpreted as an entropic ‘‘depletion’’ force

Recently @9#, monodisperse polymers~specifically
l-phage DNA! have been used to induce depletion forc
between polystyrene spheres. To model this system at
concentrations, one might replace the polymers with sphe
of radiusRG , the polymer radius of gyration. Asakura an
Oosawa derived a simple formula for the potential betwe
two large spheres of diameters in a gas of smaller sphere
of diameterD. The Asakura-Oosawa~AO! potential is@8#

U~R!

kBT
5

Pvl3

~l21!3 F12
3

2 S R

sl D1
1

2 S R

sl D 3G , ~3!

where R is the distance between the centers of the la
spheres,v is the volume of a small sphere,P is the osmotic
pressure of the small-sphere gas, andl[11D/s. The
above approximation simply setsD52RG . This is obvi-
ously a crude approximation to the true system. A compl
analysis at length scales longer than the polymer persiste
length (50 nm) would count the number of self-avoidin
random walks which avoid the two polystyrene spheres.

In general, the effective potential is of the formUeff
5PV(R) where P is the osmotic pressure andV is an
R-dependent recovered volume. At low concentrations
osmotic pressure is not adjustable:P5kBTc. The physics all
lies in V(R). The AO model gives a one-parameter family
functions, depending on the effective hard-sphere diam
D. In principle one could derive a virial expansion for th
potential with each term involving the evaluation of a set
cluster integrals, each of which involves integrations ov
polymer degrees of freedom. We will derive a different on
parameter family based on the known shape distribution
polymers and argue that the data in@9# are the first laboratory
evidence of the conformational anisotropy.

We start by calculating the classical configurational in
gral QN(R), the sum of Boltzmann weights over all confo
mations ofN polymers with two spherical inclusions sep
rated byR. The sphere-sphere effective potentialUeff(R) is

P~R!5
QN~R!

E dRQN~R!

[
exp$2bUeff~R!%

E dR exp$2bUeff~R!%

. ~4!
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Although QN(R) has terms which are independent ofR, the
resulting effective potentialUeff(R) does not: they cance
between numerator and denominator in Eq.~4!.

To calculateQN(R), we sum over all the conformation
and placements ofN polymers with the excluded-volum
Boltzmann weights: 1 if the polymers and the spheres do
overlap and 0 otherwise. We split the integration over e
polymer into three parts. The first is an integration over
center of mass, the second an integration over all rigid ro
tions of the conformation, while the third is the remainin
integration over ‘‘internal’’ degrees of freedom. This fin
integral is over each unique conformation — two conform
tions are equivalent if one is merely a rigid rotation or tran
lation of the other. We will only integrate over one represe
tative from each equivalency class. Denoting the space o
such ‘‘internal’’ polymer conformations byY, we have

QN5
1

N! )i 51

N E
Y

dri , intE dr idV i e2bU, ~5!

wheredri , int is the measure on the space of conformatio
for polymer i, r i is its center of mass, andV i is its rigid
rotation. We further divide the integration overY by char-
acterizing each polymer conformation by its principal ax
Defining g(l1 ,l2 ,l3) as the number of conformations wit
axesl i , we have

QN5
1

N! )i 51

N E dl i1dl i2dl i3 g~l i1 ,l i2 ,l i3!

3E dr idV i e2bU. ~6!

To pass from Eq.~5! to Eq. ~6! we assumed that the intern
degrees of freedom did not affect the interaction potentiaU.
This is, of course, not precisely correct. Our approximat
replaces each polymer by a solid ellipsoid, and then con
ers the potential due only to this shape. While this certai
removes many degrees of freedom, it includes more deg
of freedom than replacing the polymers by spheres. We
see that this approximation is valid by comparison with d
@9#. Thus our approximation replaces the monomer-sph
and monomer-monomer potential with a sum of pairwi
ellipsoid-ellipsoid, or sphere-ellipsoid terms. Each term
infinite for any overlap and zero otherwise.

We now reduce the complexity of the integration in E
~6! by using the shape distribution of polymers. Since
distribution of polymer shapes is peaked around the pro
spheroid, weonly consider those polymer shapes. This a
proximation does not account for the entire space of prin
pal axes, though we believe that it does characterize
polymer conformations better than a sphere. More imp
tantly, our approximation allows us to consider polyme
which are roughly the same size as the included sphe
This has a great advantage when comparing to the exp
ments of Vermaet al. @9#. By comparison, most work in this
field has treated the inclusions approximately while correc
modeling the medium as a gas of random walkers. In@10#
field theoretic methods were used to obtain the deple
potential. There, in order to calculate reliably, the auth
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considered the interaction between inclusions much sma
than the polymers, i.e.,s!RG . In the opposite extreme, on
might consider polymers which are much smaller than
spheres. In this case, it is appropriate to study the indu
Casimir force between two walls and to then approximate
interaction between spheres via the Derjaguin approxima
@11#. By approximating the polymers as prolate spheroi
we can treat the inclusions exactly — a great advantage
when the two extreme limits are not applicable.

We have thus reduced the configurational integralQN
over all polymer modes to an integral over the allowed lo
tions and orientations of a prolate spheroid. In order to
duce the phase space somewhat and reduce our compu
time, we will assume thatl15l2. In the case of interest, we
consider a prolate spheroid with aspect ratioA11.8:1
'3.4:1.0, so that

g~l1 ,l2 ,l3!}d~l12l2!d@l32~3.4!l1#

3d~RG
2 2@2l1

21l3
2# !, ~7!

whereRG is the radius of gyration of the polymer. To facil
tate the numerical evaluation of integrals, we construct
ellipsoid out of overlapping spheres. Figure 1 depicts o
sequence of approximations. We note that choosingl3@l2
5l1 would reduce our analysis to that in@12# which consid-
ered the depletion force between two spheres induced by
rods.

Writing f i j 5e2bui j 21, whereui j is the excluded-volume
potential between particlesi andj, and labeling the spheresA
andB, QN(R) can be rewritten as

QN5
1

N!
e2buABE

V
dr1dV1dr2dV2•••drNdVN

3~11 f A1!~11 f B1!~11 f A2!~11 f B2!~11 f 12!•••.

~8!

The product in Eq.~8! is a sum of terms which can b
grouped by the number of polymer positions and rotatio
that are freely integrated over. The first term is proportio
to (4pV)N, the configurational integral for free ellipsoid
whereV is the volume of space minus the volume of the tw
included spheres. Subsequent terms have fewer powersV.
Since the polymers are identical, these corrections incl

FIG. 1. Sequence of approximations. The actual polymer p
forms a self-avoiding random walk~a! which has a typical prolate
spheroidal shape~b!. For computational simplicity, we neglect th
anisotropy between the two shorter principal axes and build up
resulting ellipsoid out of overlapping spheres~c!.
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combinatoric factors involvingN. We take the limitN→`
andV→` keepingc[N/V constant to find the virial expan
sion in c.

It is both convenient and instructive to graphically rep
sent these ‘‘cluster’’ integrals@13# in terms of Mayer cluster
graphs. The first two terms inUeff(R) are

~9!

where the open dots represent the spherical inclusions
the closed dots represent the ellipsoids. The integrals in
~9! are difficult to compute analytically and thus were eva
ated numerically via a Monte Carlo algorithm: 103 different
angles and 104 different points were chosen in a volum
which included both spheres and which did not exclude
possible orientation or location of the ellipsoids. We calc
lated these integrals by this random sampling weighted
the appropriate phase-space volume factor.

To compare with experiment@9#, we took the sphere di
ameter to beD51.2 mm andRG50.5 mm. Knowing RG
enables us to find the length of the ellipsoid,L53.4
32RG /A13.8'0.92 mm. We have chosen the hard
ellipsoid radii to be the mean square radii of gyration, wh
is possibly naive: the hard-ellipsoid size should only be p
portional toRG . Since in a random walk the density deca
as 1/r , there is no natural length scale which cuts off t
excluded-volume interaction. Indeed, light-scattering exp
ments@14# have found that the effective hard-sphere radiu
roughly half the radius of gyration. The relation betweenRG
and the hard-ellipsoid size must be determined through
depletion-force experiments we are modeling.

In Fig. 2 we plot our results as a function of concent
tion. Until one considers concentrations near the polym
overlap concentrationc* 51/(4pRG

3 /3)'2/mm3, the third
virial coefficient, responsible for a repulsive ‘‘ant
correlation hole,’’ is a small perturbation to the leading te
in Eq. ~9!. Thus if we restrict our study to the dilute polyme
regime, the leading term in the virial expansion is sufficie

We compare our model with the data@9# and the AO
model atc50.5/mm3 for two reasons. This concentration

FIG. 2. Numerical result for the effective potentialUeff for dif-
fering concentrations andRG50.5 mm. We have kept terms up to
second order in the polymer concentration. Note that at the hig
concentration there is a small repulsive bump atR'2 mm. How-
ever, forc<c* '2/mm3, the third virial coefficient is a small con
tribution to Ueff .
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below the overlap concentrationc* and at the same time i
large enough that the well depth is on the order ofkBT so
that data can be reliably obtained. We can adjust the ef
tive radiusRG for both the AO model and our ellipsoid
based model. We find that a good fit results for the A
model with RG50.42 mm and for our model withRG
50.8 mm, in comparison with the light-scattering-obtaine
valueRG50.5 mm. In Fig. 3 we show the data along wit
these two one-parameter fits. We have checked other con
trations and have found that atc51.0/mm3 the theory and
experiment also compare favorably with the same effec
radii. What should one conclude from this agreement? I
possible to interpret the data as arising from either sh
simply by adjusting the size of the shape. However, o
should start from a microscopic picture based on the polym
physics of the allowed chain conformations. Only from th
perspective can one properly interpret the data.

Since the radius of gyration of thel-DNA can be calcu-
lated from its molecular weight and persistence length to
RG50.5 mm, we can consider two different zero parame
fits: our model and the AO model. The result is shown
Fig. 4. Note that the data lie between our calculation and

st

FIG. 3. Our model and the AO model are fit to the experimen
data forc50.5/mm3. We varied only the effectiveRG as a param-
eter. The fit givesRG50.42 and 0.8 for the AO model, and ou
model, respectively.

FIG. 4. Comparison of the AO model, the model presented h
and the data atc50.5/mm3. For both our model and the AO mode
we have taken the theoretical value ofRG'0.5 mm. There are no
free parameters in the models. We also plot the average of the
model and the ellipsoid calculation.
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AO model, suggesting that one could smoothly deform
AO sphere into an ellipsoid and find a best-fit aspect ratio
fit the data, giving a one-parameter fit. Indeed, we have m
a number of limited runs on the fully anisotropic shape s
isfying Eq.~2!. This results in a curve which is roughly 30%
deeper than that in Fig. 4, which is better than the sim
spherocylinder result. Finally, we have made similar co
parisons between theory and experiment atc50.1/mm3, c
50.2/mm3, andc51.0/mm3. We find that atc51.0/mm3 the
comparison is similar to that shown in Fig. 4. At the tw
lower concentrations, where the data are difficult to colle
neither our model nor the AO model make very good p
dictions.

Returning to the original question, are polymer shap
anisotropic? Though the full distributiong(l1 ,l2 ,l3) is
peaked, it has a finite width. We can incorporate this wi
by choosing an appropriately weighted admixture of shap
Note that we could easily get a very good fit just by mixi
spheres and ellipsoids — the mixed second virial coeffici
is just a linear combination of the two ‘‘pure’’ coefficients.
is easy to see from Fig. 4 that a 50-50 admixture of sphe
s
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and ellipsoids would give a remarkably good fit to the da
without any adjustable parameters. While we have no b
for this weighting of shapes, we nonetheless take this
direct evidence for the anisotropy of polymer conformatio

In closing, we note that while counting polymer confo
mations by treating them as rigid ellipsoids is appropriate
static properties, it is not clear at all that the dynamics
flects this. In particular one might ask whether a polym
ellipsoid rotates to a new orientation slower or faster tha
deforms into that orientation. Finally, our analysis could a
be used to study the depletion interaction by actual ellips
dal objects, such as bacteria@15#.
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